10 Polynomial CRT and finite fields

10.1. Construct finite fields consisting of (a) 25, (b) 8, (c) 125 elements.

Solutions: e.g. factors (a) $\mathbb{Z}_5[\alpha]/(\alpha^2+2)$, (b) $\mathbb{Z}_2[\alpha]/(\alpha^3+\alpha+1)$, (c) $\mathbb{Z}_5[\alpha]/(\alpha^3+\alpha+1)$.

10.2. Construct a splitting field of the polynomials

(a) $x^3 + 1$ over the field \mathbb{Z}_2 ,

(b) $x^2 + 1$ over the field \mathbb{Z}_7 ,

(c) $x^9 - x$ over the field \mathbb{Z}_3 ,

and decompose all the polynomials into linear factors.

Solutions: (a)
$$x^3 + 1 = (x+1)(x+\alpha)(x+\alpha+1)$$
 over $\mathbb{F}_4 = \mathbb{Z}_2[\alpha]/(\alpha^2 + \alpha + 1)$
(b) e.g. $x^2 + 1 = (x+\alpha)(x-\alpha)$ over $\mathbb{F}_{49} = \mathbb{Z}_7[\alpha]/(\alpha^2 + 1)$,
(c) $x^9 - x = \prod_{a \in \mathbb{F}_9} (x-a)$ over \mathbb{F}_9 , e.g. $\mathbb{F}_9 = \mathbb{Z}_3[\alpha]/(\alpha^2 + 1)$

10.3. Find all polynomials f of degree < 3 satisfying

(a) $f(0) = 1, f(1) = 2, f(2) = 3, f \in \mathbb{Z}_7[x],$

(b)
$$f(0) = 3, f \equiv x + 1 \pmod{x^2 + 1}, f \in \mathbb{Q}[x].$$

Solutions: (a) f = x + 1, (b) $f = 3 + x + 2x^2$.

10.4. Design a secret sharing protocol for 5 participants such that at least 3 of them are needed to reveal the secret where the secret is an element of the field \mathbb{F}_7 .

10.5.* Prove that $\mathbb{Z}_3[\alpha]/(\alpha^4 + \alpha^3 + \alpha + 2)$ is not a field.

Hint: Decompose $\alpha^4 + \alpha^3 + \alpha + 2 = (2 + \alpha + \alpha^2)(1 + \alpha^2)$.

10.6. Prove that the map $\rho : \mathbb{Z}_5[\alpha]/(\alpha^4 - 1) \to \mathbb{Z}_5^4$ given by $\rho(f) = (f(1), f(2), f(3), f(4))$ is a bijection.

Hint: Show that $x^4 - 1 = (x - 1)(x - 2)(x - 3)(x - 4)$ and apply CRT.