12 Orders

12.1. Prove that any group of prime order is cyclic.

Hint: Using the Lagrange theorem show that the order of an arbitrary non-trivial cyclic subgroup is of the same order as the group.

12.2. In the group \mathbf{S}_5 determine the order of the cyclic subgroup $\langle \pi \rangle_{\mathbf{S}_5}$ and the index $[\mathbf{S}_5 : \langle \pi \rangle_{\mathbf{S}_5}]$ if

- (a) $\pi = (1\,2\,3\,4\,5),$
- (b) $\pi = (12)(345),$
- (c) $\pi = id.$

Solutions: (a) $|\langle \pi \rangle| = 5$, $[\mathbf{S}_5 : \langle \pi \rangle] = 4! = 24$, (b) 6, 20, (c) 1, 120.

12.3. Decide whether H is a subgroup of G and if it is, determine the index [G : H] and all (left) cosets and the transversal of H of G by H if

- (a) $G = \mathbb{Z}_{12}$ and $H = \{0, 3, 6, 9\},\$
- (b) $G = \mathbb{Z}_{10}$ and $H = \{0, 3, 6, 9\},\$
- (c) $G = \mathbf{S}_3$ and $H = \{id, (12), (23)\},\$
- (d) $G = \mathbf{S}_3$ and $H = \{id, (12)\}.$

Solutions: (a) yes, cosets: $\{0,3,6,9\}$, $\{1,4,7,10\}$, $\{2,5,8,11\}$, a transversal e.g. $\{0,1,2\}$, (b) no, (c) no, (d) yes, H, $(123)H = \{(123),(13)\}$, $(132)H = \{(132),(23)\}$, a transversal e.g. $\{id,(123),(132)\}$.

12.4. In the group $(\mathbb{Z}, +, -, 0)$ and $a, b \in \mathbb{Z}$

- (a) prove that $\langle a, b \rangle = \langle \gcd(a, b) \rangle$ for each $a, b \in \mathbb{Z}$,
- (b) prove that every finitely generated subgroup of \mathbb{Z} is cyclic,
- (c) find a generator of the cyclic group $\langle 21, 15 \rangle$ and compute $[\mathbb{Z} : \langle 21, 15 \rangle]$,
- (d) compute $[\mathbb{Z} : \langle 60, 42, 78 \rangle].$

Solutions: (a) apply Bezout coefficients (b) use induction and (a), (c) 3, 3, (d) 6.

12.5. Explain, why the group S_{16} contains no element of order 17.

Hint: Apply the Lagrange theorem.

12.6.* Prove that the additive group of rational numbers $(\mathbb{Q}, +, -, 0)$ is infinitely generated, i.e. $\langle X \rangle_{\mathbb{Q}} \neq \mathbb{Q}$ for each finite $X \subset \mathbb{Q}$.