13 Group actions

13.1. Calculate, how many different bracelets can be made with six red and three white beads, using all nine beads.

Solution: 7

13.2. Suppose you have 8 red and 8 blue equilateral triangles. Count the number of ways one can build an equilateral triangle with edges of quadruple sizes

- (a) up to rotations,
- (b) up to rotations and reflections.

Solutions: (a) 4290 (b) 2220

13.3. Consider the action of the group $G = \mathbf{S}_n$ on the set $\{(a, b) : 1 \leq a, b \leq n\}$, with the permutation π acting on the components, i.e. $\pi((a, b)) = (\pi(a), \pi(b))$. Determine

- (a) $|X| \sim |$, the number of cosets of the equivalence \sim ,
- (b) the number of elements of $[(1,1)]_{\sim}$ and $[(1,2)]_{\sim}$,
- (c) indexes $[G:G_{(1,1)}]$ and $[G:G_{(1,2)}]$.

Solutions: (a) 2, (b) $|[(1,1)]_{\sim}| = n$ and $|[(1,2)]_{\sim}| = n(n-1)$, (c) n, n(n-1).

13.4. Determine how many ways the faces of the regular tetrahedron can be coloured by n colours up to rotations.

Solution: $\frac{1}{12}(n^4 + 11n^2)$.

13.5.^{*} Determine how many ways the faces of the cube can be coloured by n colours up to rotations.

Solution: $\frac{1}{24}(n^6 + 3n^4 + 12n^3 + 8n^2)$.