4 Quotient field

Let **R** be a domain, and $\mathbf{M} = \mathbf{R} \setminus \{0\}$ and \sim a relation on $\mathbf{R} \times \mathbf{M}$ given by $(a, b) \sim (c, d) \Leftrightarrow ad = bc$.

4.1. Prove that the relation \sim is an equivalence.

We define the fraction $\frac{a}{b}$ to be the equivalence class $[(a,b)]_{\sim} = \{(c,d): (c,d) \sim (a,b)\}$. The quotient field \mathbb{Q} consists of the set \mathbb{Q} of all fractions, together with the operations and constants:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{ad}, \quad -\frac{a}{b} = \frac{-a}{b}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}, \quad 0 = \frac{0}{1}, \quad 1 = \frac{1}{1}.$$

4.2. Prove that the operations on $\mathbf{R} \times \mathbf{M}$ are correctly defined.

Solutions: It is enough to show for each $\frac{a}{b} = \frac{\tilde{a}}{\tilde{b}}$, $\frac{c}{d} = \frac{\tilde{c}}{\tilde{d}}$ that $\frac{a}{b} \pm \frac{c}{d} = \frac{\tilde{a}}{\tilde{b}} \pm \frac{\tilde{c}}{\tilde{d}}$, $\frac{a}{b} \cdot \frac{c}{d} = \frac{\tilde{a}}{\tilde{b}} \cdot \frac{\tilde{c}}{\tilde{d}}$. **4.3.** Prove for each $a, c, e \in \mathbf{R}$ and $b, d, f \in \mathbf{M}$

- (a) $\frac{ad}{bd} = \frac{a}{b}$,
- (b) associativity of addition: $\frac{a}{b} + (\frac{c}{d} + \frac{e}{f}) = (\frac{a}{b} + \frac{c}{d}) + \frac{e}{f}$,
- (c) commutativity of addition: $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$,
- (d) additive identity: $\frac{a}{b} + \frac{0}{1} = \frac{a}{b}$,
- (e) additive inverse: $\frac{a}{b} + \frac{-a}{b} = 0$,
- (f) associativity and commutativity of multiplication \cdot ,
- (g) unity element: $\frac{a}{b} \cdot \frac{1}{1} = \frac{a}{b}$,
- (h) distributivity: $\frac{a}{b} \cdot \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{ac}{bd} + \frac{ae}{bf}$,
- (i) $\frac{b}{d}$ is the multiplicative inverse of $\frac{d}{b}$.

4.4. Prove that the quotient field $(\mathbb{Q}, +, -, \cdot, 0)$ is a field and $(\mathbf{R}, +, -, \cdot, 0)$ is its subdomain where we identify elements $r \in \mathbf{R}$ with $\frac{r}{1}$.

4.5. Describe the quotient fields of the domains

- (a) integers \mathbb{Z} ,
- (b) real polynomials $\mathbb{R}[x]$
- (c)^{*} arbitrary field F.

Solutions: (a) \mathbb{Q} , (b) rational functions, (c) F.

4.6. Let $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$ (the Gaussian integers). Prove that

- (a) $\mathbb{Z}[i]$ forms a subring of the field of complex numbers \mathbb{C} ,
- (b) $(\mathbb{Z}[i], +, -, \cdot, 0)$ is a domain,
- $(c)^{\star} \mathbb{Q}[i] = \{a + ib \colon a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$ is a quotient field of $\mathbb{Z}[i]$.
- **4.7.** (a)^{\star} Show that the empty set cannot be a ring.
 - $(b)^*$ Discuss the one-element ring. Is it a domain? Is it a field?