5 Rings, subrings, polynomials

5.1. Let X be a set, |X| > 1, denote $P(X) = \{Y : Y \subseteq X\}$, and $A \div B = (A \cup B) \setminus (A \cap B)$ and -A = A for each $A, B \subseteq X$.

- (a) sketch the proof that $(P(X), \div, -, \cap, \emptyset)$ is a commutative ring.
- (b) What is identity of the operation \cap ?
- (c) Is $(P(X), \div, -, \cap, \emptyset)$ domain?

5.2. Let $\mathcal{Z}^2 = (\mathbb{Z}^2, +, -, \cdot, (0, 0))$, where $(a, b) \pm (c, d) = (a \pm c, b \pm d)$ and $(a, b) \cdot (c, d) = (a \cdot c, b \cdot d)$. Sketch the proof that \mathcal{Z}^2 is a commutative ring with identity which is not a domain.

5.3. Decide for the following subsets of the filed of complex numbers $\mathcal{C} = (\mathbb{C}, +, -, \cdot, 0)$

$$\mathcal{R}_{1} = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}, \quad \mathcal{R}_{2} = \{a + b\sqrt{2} + c\sqrt{3} : a, b, c \in \mathbb{Z}\},$$
$$\mathcal{R}_{3} = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}, \quad \mathcal{R}_{4} = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}$$

- (a) which $\mathcal{R}_i = (R_i, +, -, \cdot, 0), i = 1, 2, 3, 4$, form subrings of \mathcal{C} ,
- (b) which $\mathcal{R}_i = (R_i, +, -, \cdot, 0), i = 1, 2, 3, 4^*$, form subfields of \mathcal{C} .

5.4. Calculate

- (a) $(x^4 2x^3 x^2 + x 2) \mod x^2 + 2$ in $\mathbb{Z}_5[x]$,
- (b) $(x^4 2x^3 x^2 + x 2) \operatorname{div} x^2 + 2$ in $\mathbb{Z}_5[x]$,
- (c) $(x^5 + 2x^3 3x 2) \mod x 2$ in $\mathbb{Z}_7[x]$.

Solutions: (a) 4, (b) $x^2 + 3x + 2$, (c) 5

5.5. Find all roots of the polynomial

- (a) $x^3 + 2x^2 + x \in \mathbb{Z}_3[x]$ in the field \mathbb{Z}_3 ,
- (b) $x^2 + 1 \in \mathbb{Z}_3[x]$ in the field \mathbb{Z}_3 ,
- (c) $x^2 + 1 \in \mathbb{Z}_5[x]$ in the field \mathbb{Z}_5 ,
- (d) $x^6 1 \in \mathbb{Z}_7[x]$ in the field \mathbb{Z}_7 ,
- (e) $x^6 1 \in \mathbb{C}[x]$ in the field \mathbb{C} .

Solutions: (a) 0, 2, (b) \emptyset , (c) 2, 3, (d) $\mathbb{Z}_7 \setminus \{0\}$, (e) $e^{\pi i n/3}$ for $n \in \mathbb{Z}_6$.