6 Divisibility in domains

6.1. Let \mathcal{F} be a field and $f \in F[x]$ of degree $\deg(f) \leq 3$. Prove that f is irreducible iff it has no root or $\deg(f) = 1$.

6.2. Let $f(x) = x^3 + 2x + 3 \in \mathbb{Z}_5[x]$. Describe all invertible elements of the ring $\mathbb{Z}_5[x]$ and all polynomials associated with f. Decide whether x + 3 divides f.

6.3. Decide which of the polynomials 2x + 6, $x^2 - 6$, and $3x^2 + 4x + 1$ are irreducible in (a) $\mathbb{Z}[x]$, (b) $\mathbb{Q}[x]$, (c) $\mathbb{R}[x]$.

6.4. Calculate in the domains $\mathbb{C}[x]$, $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}_3[x]$ and $\mathbb{Z}_5[x]$ the irreducible decompositions of the polynomial $x^3 - 2$.

For $s \in \mathbb{Z}$ square-free, consider a subdomain of \mathbb{Q} defined as $\mathbb{Z}[\sqrt{s}] = \{a + b\sqrt{s} \mid a, b \in \mathbb{Z}\}$. For this ring, we define a norm $\nu : \mathbb{Z}[\sqrt{s}] \to \mathbb{N}$:

$$\nu(a+b\sqrt{s}) = \mid a^2 - sb^2$$

6.5. Prove for $\alpha, \beta \in \mathbb{Z}[\sqrt{s}]$

- (a) $\nu(\alpha \cdot b) = \nu(\alpha)\nu(\beta)$,
- (b) $\nu(\alpha) = 1$ iff α is invertible, and find a formula for computing the inverse.
- (c) if $\alpha \mid \beta$ then $\nu(\alpha) \mid \nu(\beta)$,
- (d) if $\nu(\alpha)$ is prime, then α is irreducible.

6.6. In the domain $\mathbb{Z}[\sqrt{3}]$

- (a) explain why $2 + \sqrt{3}, 2 \sqrt{3} \in \mathbb{Z}[\sqrt{3}]^*$,
- (b) find inverses to $2 + \sqrt{3}$ and $2 \sqrt{3}$,
- (c) explain why $1 + \sqrt{3}, 4 \sqrt{3}$ are irreducible.
- **6.7.** Consider the domain $\mathbb{Z}[\sqrt{5}]$. Show that
 - (a) $2, \sqrt{5} + 1, \sqrt{5} 1$ are irreducible,
 - (b) 2 is not associated with $\sqrt{5} \pm 1$,
 - (c) $\mathbb{Z}[\sqrt{5}]$ is not a UFD.